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Homoclinic and heteroclinic solutions
of upheaval buckling

B y G. W. Hunt1 and A. Blackmore2

1Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
2Department of Engineering, University of Cambridge, Trumpington Street,

Cambridge CB1 1PZ, UK

Upheaval of a heavy flexible strut from a rigid bed is viewed as an initial-value
problem and spatial kinetic and potential energy functions are consequently defined.
Upheaval from a perfectly flat state is characterized by the simultaneous vanishing
of both functions at the boundaries. Smooth (flat to flat) connection without contact
over a step in the bed is thus deemed impossible. A linear non-homogeneous fourth-
order ordinary differential equation governs in regions of separation, but not when
contact with the bed is maintained. This piecewise property is enough to ensure
that several kinds of homoclinic and heteroclinic solutions exist for prop and step
imperfections. Application is to subsea pipelines and examples of competing solutions
for a realistically proportioned finite-length experimental pipe are included.

1. Introduction

The problem of uplift or upheaval of a heavy compressed strut from a rigid bed, as
well as being of practical importance to the off-shore engineering industry (Hobbs
1984; Taylor & Gan 1987; Ju & Kyriakides 1988), has some intriguing mathematical
properties. It responds well to analytical shooting methods (Blackmore 1995) and in
the spirit of this special issue exhibits both single and multiple-hump localized solu-
tions (Hunt & Blackmore 1996). In the sense sometimes referred to as the dynamical
systems analogy (Kirchhoff 1859; Hunt et al. 1989), this structural boundary-value
problem (BVP) is usefully interpreted as a dynamical system, with initial-value (IVP)
information and spatial energy characteristics.

The conventional analytical approach is to model the system as a BVP of unknown
length. For a perfectly flat bed of finite stiffness, in the absence of boundary effects,
there would exist inside the bed a flat (fundamental) equilibrium state, where the
force in the bed just compensates for the weight of the pipe. Linear eigenvalue analy-
sis shows that deflection (y) away from this state is by oscillation with exponentially
growing amplitude. As the bed stiffness approaches infinity, both the amplitude and
the wavelength of the oscillation tend to zero, so upheaval from a rigid bed is char-
acterized by a non-zero deflection growing from a flat state at each end. Although
this seems to imply that y and all its derivatives are zero at the ends, deflection is
brought into the pipe and lift-off achieved by reactive shear loads, giving non-zero
third derivatives (

...
y), at the boundaries; y and the remaining derivatives (

.
y and

..
y) remain zero however. Techniques such as the finite element method experience
considerable difficulties associated with unknown buckle lengths.
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2186 G. W. Hunt and A. Blackmore

Figure 1. (a) Heavy pipe lifting from a flat bed. (b) Prop imperfection. (c) Step imperfection.

As a BVP the system is thus at first glance overdetermined. The uplifted shape
can be characterized by a standard fourth-order linear ordinary differential equation
(ODE), but is subject to three boundary conditions, y =

.
y =

..
y = 0, at each end.

This is traditionally resolved (Hobbs 1981; Taylor & Gan 1984) by including buckle
length as an unknown and replacing three conditions at one end by two symmetric-
section conditions,

.
y =

...
y = 0, at the centre. However, the approach appears rather

inflexible; it has difficulty in dealing with deflection over a step for example, where
use of a symmetric-section condition is denied (Blackmore 1995).

For this and associated reasons we adopt shooting methods, whereby numerical
integration of the governing ODE is undertaken with a set of four initial values
(Champneys & Spence 1993). One or more of these can be varied until a target
condition (e.g. the symmetric section as defined in §3 c (iii)) is met at some previ-
ously unspecified point along the length; buckle lengths thus decide themselves. In
this context, spatial analogies of kinetic and potential energy from dynamics prove
most useful. Although the problem is driven by practical considerations, we take the
opportunity to expand on some implications of modelling with a rigid bed. Solu-
tions of regular periodic contact, or skipping, are identified, with homoclinic and
heteroclinic connections emerging, depending on the type of imperfections, between
both flat and periodic states. Alternative equilibrium states are interpreted for an
experimental rig at present under development at Sheffield Hallam University (Tran
1994; Taylor & Tran 1996), aimed at exploring the relative effects of prop and step
imperfections on subsea pipelines under compression due to hot oil or gas.

2. Practical considerations

The prototype system under consideration is shown in figure 1. Figure 1a has
a finite-length inextensional elastic pipe of weight per unit length Q and bending
stiffness EI, carrying a compressive load P , in a state of upheaval from a perfectly
flat rigid bed. The separated length is denoted by L and the end-shortening (corre-
sponding deflection of the load) by ∆. Upwards point load reactions (not shown) of
magnitude 1

2QL occur at each lift-off point. Because Q acts to hold the pipe to the
bed, an infinite (critical) load is required to buckle the perfect system of figure 1a.
To describe the initiation of buckling more realistically, imperfections in the bed are
therefore often introduced (Taylor & Gan 1986; Taylor & Tran 1993). Figures 1b,c
show two typical types, the prop and the step. A shooting method applied to equa-
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Figure 2. Comparative effects of (a) prop and (b) step imperfections. Arrows indicate
increasing imperfection heights h = 0.1, 0.2 and 0.5.

tion (3.1) of the next section, with EI and Q each set to unity, leads to the response
diagrams of figure 2, in which plots of P against L are shown for three different
values for each imperfection.

Although it may not be strictly meaningful to compare quantitatively these two
different types of imperfection, qualitative differences are plain to see. Each response
goes through a maximum limiting load, with unbuckled states to the left (low L)
and uplifted states to the right. However, the prop imperfection of figure 2a presents
this as a sharp corner on each response curve, reflecting the fact that after upheaval
contact with the prop is lost, whereas the step imperfection of figure 2b rounds the
corners to genuine limit points as shown. It thus appears that a more profound
destabilizing role can be attributed to the step than the prop.

Inherent in the concept of homoclinic connection is that of an infinite domain,
with x extending to infinity in at least one direction as y approaches zero. Practical
pipelines, on the other hand, are governed by ‘active length’, which friction dictates
as being that which is capable of unloading into the buckled region; outside this
length the pipe is essentially unaware that buckling has occurred. Active length is of
considerable practical significance—in the presence of axial compressibility it governs
how much effective shortening the uplifted region receives—but it changes as buckling
progresses and is difficult to measure or estimate. Even conservative estimates put
active lengths as greater than those of reasonably designed experiments, however, and
we thus conclude that experiments of upheaval are unlikely to be free from boundary
effects; these include skipping, in which the pipe periodically loses contact with the
bed, as seen later. We note that shooting methods can be adapted for the practical
case including friction, the associated forces being readily calculated as displacement
progresses along the length (Blackmore & Hunt 1996).

3. Formulation

(a ) Differential equation
The linearized governing equation for a strut of weight/unit length Q, bending

stiffness EI and carrying an axial compression P (Timoshenko & Gere 1963) is,

EI
....
y + P

..
y +Q = 0, (3.1)

where dots denote differentiation with respect to the spatial axial coordinate x. To
generalize this equation and find its eigenvalues we write p = P/

√
EIQ/`, ỹ = y/`
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and redefine dots to denote differentiation with respect to x̃ = x 4
√
Q/EI`, to give

....

ỹ + p
..

ỹ + 1 = 0, (3.2)

where ` is a typical length measure, introduced merely to complete the non-
dimensionalization; for all practical purposes, ` can be taken as unity. After writing
ỹ = Aeλx̃, the characteristic equation becomes

λ4 + pλ2 = 0, (3.3)

which is of a degenerate form with two imaginary and two coincident zero eigen-
values. We note the similarity with the rotationally symmetric mode of the axially
compressed cylinder (Lord et al., this volume). The general solution is

ỹ = a+ bx̃+ c cos
√
px̃+ d sin

√
px̃− 1

2p
x̃2, (3.4)

where a, b, c and d are real constants which depend on boundary conditions (Hunt
& Blackmore 1996). From this point, unless identified otherwise, all representations
are dimensionless and we drop the tilde.

(b ) Spatial energies
If equation (3.2) is viewed as a Lagrange equation, analogues to kinetic and poten-

tial energy can be written, respectively, as

T =
.
y
...
y + 1

2p
.
y2,

V = y − 1
2
..
y2. (3.5)

Whilst the Lagrangian L = T − V for such a system is not unique, this choice
proves particularly convenient; these spatial energy functions are used extensively
in the analysis that follows. The Hamiltonian nature of the system implies that
H = T + V = const. over the spatial domain described by x.

(c ) Initial/boundary conditions
No immediate distinction is made in the general description below of initial and

boundary conditions applied to the above differential equation. However, a fourth-
order system, when treated as a BVP, naturally suits two prescribed boundary condi-
tions at each end. We identify in what follows a number of archetypal end conditions
of practical importance which, depending on the type of solution under considera-
tion, appear in different combinations as initial and target conditions for the numer-
ical shooting method. Among these is the asymptotic boundary, which necessarily
involves three separate conditions. Such a boundary is clearly more suited to IVP
than BVP analysis, and this reinforces the selection of a shooting method based on
a Runge–Kutta formulation, rather than a standard structural approach such as the
finite element method.

(i) Asymptotic condition
If upheaval is from a flat rigid bed, the point of separation, which we choose to

designate y = 0, is marked by the three conditions y =
.
y =

..
y = 0. If, in addition,

the vertical reactive force at lift-off is obliged to be upwards, this is accompanied by
the further condition,

...
y > 0.

By analogy with the system on the finite stiffness bed (Hunt & Blackmore 1996),
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Figure 3. Draped solutions to non-dimensional equation (3.2) with ` = 1, plotted at p = 6 over
(a) prop of height h = 0.1; (b) step of height h = 0.1 (upheaval lengths are as indicated).

although it is met in finite rather than infinite x, we continue to refer to this as
an asymptotic condition. It applies at the ends of a homoclinic connection. With y
measured from the bed, the spatial energy functions (3.5) give T = V = H = 0 at
an asymptotic boundary point. Similar conditions also apply at the boundaries of a
heteroclinic connection between different energy levels over a step, with y 6= 0 (and
hence H 6= 0) at one of the levels.

(ii) Fixed-anchor point (FAP) condition
For a fixed-anchor point or clamped condition, y =

.
y = 0. Also, for upwards lift-off

from a flat bed,
..
y > 0 at this point. When the bed is flat and level these conditions

also apply at points of contact in the skipping mode (see §3 d (iv)). Unlike point
support at a corner (see figure 4 for instance),

.
y is necessarily zero and a jump in

...
y due to the reactive force cannot then affect the total spatial energy H, which is
thus conserved through a skipping point of contact. Under experimental and certain
practical conditions, FAPs exist where a pipe is clamped or restrained. At such a
point, T = 0 and H = V = 1

2
..
y2.

(iii) Symmetric-section condition
Points on the so-called symmetric-section (Hunt & Wadee 1991) arise at the centre

of an uplifted region over a flat bed. At such a point where y = ymax,
.
y =

...
y = 0 and

hence T = 0 and H = V = ymax − 1
2
..
y2.

(d ) Primary solutions
More complicated shapes or behaviours can arise from combinations or modifica-

tions of the following forms, which again seem to carry some primary significance.

(i) Draped shapes
At zero or low axial loads, a pipe will drape over a prop or step as shown in

figures 3a,b, respectively. In figure 3a, asymptotic conditions can only be met at
both ends if the pipe rests symmetrically about the prop, such that the jump in
...
y at the prop does not result in a jump in the total spatial energy H. To satisfy
asymptotic conditions at each level of figure 3b, however, the pipe must lean against
the step, as described later in §3 d (iii).

(ii) Homoclinic connection
For a pipe resting initially on a prop, as load is increased equilibrium states can

be found in which the pipe has lost contact with the prop. The deflected shape after
upheaval then connects an asymptotic point to itself; with no possibility of input of
energy, the hamiltonian H is conserved over the full range of x. While noting again
that, in contrast to the classical form for a bed of finite stiffness, this occurs over a
finite distance, we shall continue to refer to it as a homoclinic connection.
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Figure 4. Pre- and post-upheaval leaning solutions to non-dimensional equation (3.2), with
` = 1 at p = 6 and step height h = 0.1.

The concept of active length means that stable irregularly spaced multi-humped
solutions can exist, with each hump outside the range of influence of the others. In
the absence of friction stability is lost (see Sandstede, this volume), so if two humps
are within range of one another, stability becomes an open question.

(iii) Leaning solutions
Analogously to the draped and homoclinic solutions over the prop, as the load is

raised two equilibrium possibilities appear supported by a step, as shown in figure 4.
In each case, the non-zero reaction at the corner of the step implies a jump in

...
y ,

which couples with the non-zero
.
y to give a jump in T . Enough spatial energy H is

thus added or removed to enable asymptotic conditions to be satisfied at each level.
These are heteroclinic connections, between different flat equilibrium states.

(iv) Skipping solutions
For a perfectly flat bed, skipping solutions exist that pass though FAP boundary

conditions each time the pipe touches the bed. From the general solution (3.4), setting
y =

.
y = 0 at x = 0 gives, directly,

a = −c =
p
..
y0 + 1
p2 and b = −d√p =

...
y0

p
. (3.6)

However,
..
y0 and

...
y0 are not independent, but are linked by the symmetry of the flat

bed. Symmetric-section conditions
.
y =

...
y = 0 applied at x = 1

2L (half the skiplength)
give

tan
√
p 1

2L = d/c and b = L/2p. (3.7)
From (3.6), skiplength L is then

L = 2
...
y0, (3.8)

while second derivatives
..
y0 and

..
yL/2 can be written in terms of

...
y0 as

p
..
y0 =

√
p
...
y0

tan
√
p
...
y0
− 1, (3.9)

p
..
yL/2 =

√
p
...
y0

sin
√
p
...
y0
− 1. (3.10)

Small
...
y0 leads to negative

..
y0 and contravenes the FAP conditions, so vanishingly

small amplitude skipping solutions are disallowed. Since T0 = TL/2 = 0, VL/2 = V0
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Figure 5. Heteroclinic connections involving skipping: (a) from a flat equilibrium state; (b) from
one skipping state to another. Plotted for non-dimensional equation (3.2), with ` = 1 at p = 1
and step height h = 10. Note that waves that differ only slightly on the upper level here connect
with significantly different responses on the lower level.

and skipheight yL/2 follows directly from the spatial potential energy V (3.5),

yL/2 = 1
2(
..
y2
L/2 −

..
y2

0). (3.11)

A skipping solution is typified by
..
y remaining continuous and positive at a point

of contact, accompanied by a positive jump in
...
y associated with an upwards vertical

reaction. For a perfectly flat bed, each skip is symmetrical about its centre and
third derivatives

...
y at take-off and landing are equal and opposite; as only upwards

reactions are allowed the first is necessarily positive and the second negative. Reactive
forces at all points of contact are thus the same and complete regularity of behaviour
(periodicity) is achieved.

Although the hamiltonian H is conserved over skipping points of contact, the very
possibility of their presence provides other ways, apart from leaning, for a system
to accommodate the jump in H associated with passage over a step. This is shown
in figure 5, which demonstrates two valid forms of heteroclinic connection, from the
flat fundamental state to a periodic skipping state, and from one skipping solution
to another of a different frequency.

4. Characteristics of the step imperfection

Much work, experimental and theoretical, has been done on symmetric (prop)
imperfections of various kinds (see, for example, Boer et al. 1986; Ju & Kyriakides
1988; Taylor & Tran 1993). Asymmetric imperfections like the step have received
significantly less attention, however, despite the qualitatively more significant desta-
bilizing role brought out in figure 2. Greater variety of solution is also possible. To
demonstrate this we take the dimensions of a typical finite-length experimental rig
with a step imperfection and impose upon it several of the possible solutions alluded
to above.

(a ) Competing solutions
For systems of finite length, or those governed by short active lengths, at least three

types of solution compete for the most effective means of relieving a compressed state
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over a step. The leaning solution of figure 4 is one way of overcoming the difference
in total spatial energy H between the levels. Asymptotic conditions can be satisfied
at each point of contact and a heteroclinic connection established between the two
flat equilibrium states. This is a truly localized solution, with the spatial position in
x being governed entirely by the position of the step.

On the other hand, by skipping a pipe can carry a non-zero bending moment
and hence a non-zero value of H back to a fixed anchor point. It is thus possible to
connect over a step between an asymptotic boundary at a lower level and a skipping
solution at an upper level, as seen in figure 5a, but not vice versa. (With y measured
from the upper level, H = T + V = 0, so at the lower level where y is negative and
T = 0,

..
y2 < 0 from (3.5).) We refer to this as a semilocalized solution, heteroclinic

between a flat and a periodic equilibrium state. Its spatial position in x depends on
the position of the step only in the conditional sense that contact must be avoided,
but is fixed by the distance from the FAP boundary.

Or finally, it may suit the boundaries and wavelengths involved for skipping solu-
tions to apply on both sides of a step. As a skipping solution meets a step its period-
icity is interrupted; periodicity at different wavelengths exists on each side of a step,
as seen in figure 5b. Reactions closest to the step are both different from one another
and from those of each periodic sequence. If FAP conditions are used at both ends of
a relatively short pipe (as below) the problem is readily formulated in boundary-value
terms. If, however, skipping is involved on each side of the step, different solutions
with differing skiplengths may present themselves. Interesting mathematical ques-
tions, left for future study, are raised by long-but-finite lengths.

(b ) Experimental rig
The following results are interpreted specifically for an experimental apparatus

under development at Sheffield Hallam University under the direction of Dr N. W.
Taylor. A steel pipe of wall thickness 1.6 mm and diameter 9.53 mm, 6 m in length,
carries water at a slow flow rate. The ends are clamped so that all movement is
restricted and FAP boundary conditions apply, and a 17 mm step is introduced at
the mid-length. The water can be heated externally in a separate bath to induce
buckling. The rig is an adaptation of one previously used for the study of prop
imperfections (Taylor & Tran 1993; Tran 1994).

(c ) Friction and axial compressibility
In genuine applications, friction between a pipe and the seabed, and axial com-

pressibility, are clearly of prime significance. Via the concept of active length they
together dictate how much elastic energy is available to unload into the uplifted
region and hence determine the extent of the instability before restabilization.

For the effects of friction, consider the response curves of figure 6a. Here, for the
dimensions of the above pipe and step height but over an active length governed by an
assumed coefficient of friction φ = 0.2, the variation of the load in the uplifted region,
P , for the fully localized (leaning) solution is compared with that for the control load,
P0, found outside the active length. The latter varies linearly with temperature, while
the difference in the two loads is taken up by friction. The curve for P has the form
of figure 2b and continues to fall with L, but that for P0 restabilizes, such that the
indicated snap buckle at constant P0 leads to a stable uplifted shape of just under 6 m
in length—of the order of, but less than, the experimental length of 6 m; typically,
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Figure 6. Response curves for the leaning solution. (a) Effects of friction under temperature
control (active length ca. 100 m). (b) Load P plotted against end-shortening ∆ under frictionless
conditions (length = 6 m, constrained ends).

however, active lengths are found to be much greater than that of the experiment,
of the order of 100 m at the destabilizing limit point for instance.

This suggests that practice and experiment may lead to quite different responses.
The snap buckle of figure 6a depends critically on the axial compression over a long
length unloading into the buckled region, and yet a typical experimental length is
only of the order of the buckled length. Figure 6b shows load P plotted against
the total end-shortening ∆ for a frictionless bed and the length and step height
in question. The latter comprises two components, EA-dependent shortening due
to direct axial compression and EI-dependent shortening due to buckling. The axial
(EA) component tends to tilt the curve to the right, with the degree of tilt increasing
with total (active) length; the longer the pipe, the less stiff the initial response and
the smaller the slope of the pre-buckling (fundamental) equilibrium path. The effect
of this initial squash is to ‘spring load’ the system, such that snap-back, as exhibited,
for example, by the axially compressed cylindrical shell (see figure 1 of Lord et al.,
this volume), becomes a possibility. The horizontal snap buckle of figure 6a and
consequent drop in P is then most closely represented, on the curve of figure 6b, by
a downwards snap at constant ∆. Again, the longer the pipe, the greater the tilt on
the curve and the more severe the snap-back.

For the length and step height considered here, however, the phenomenon of snap-
back is clearly absent; the experimental length is simply too short. We hence conclude
that the experimental leaning response, in contrast to that expected from a pipeline
of practical dimensions laid over a step, is likely to be stable and undramatic.

The effect of end-constraint, either by friction or by clamping, is thus to inhibit
the extreme instability nominally met by the compressed strut of infinite length; the
infinite compressive strain energy available for transmission into the buckled region
is rendered finite. After the maximum on the response curve, a jump may or may not
take place to a reduced load state, the extent or otherwise of the jump depending
crucially on either the active, or the actual experimental, length.

(d ) Comparative results
Figure 7a compares fully and semilocalized solutions for the experimental appara-

tus of interest. The response curves are plotted up to the maximum possible length of
6 m, but, of course, for these localizing solutions they apply also for shorter lengths.
In the loading region only the leaning solution exists, but in the post-maximum
unloading region both solutions apparently are valid. However, figure 7b demon-
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Figure 7. Response curves for the experimental data of §4 b. (a) Comparison of fully localized
(leaning) and semilocalized solutions. (b) Lower (L1) and upper (L2) separated lengths for the
leaning solution.

strates a further constraint on the leaning solution, in that to maintain contact with
the corner, the upper separated length L2 must be less than the half length of 3 m;
this invalidates the dashed portion of figure 7a. Although sought no further here,
transitional solutions must exist in this region to transfer the path from the fully to
the semilocalized state.

The localized solutions of figure 7 are valid for all lengths up to 6 m. Standard
boundary-value solutions for fixed 6 m lengths are also available. Generally, skipping
either on the upper level alone or on both the upper and lower levels provides further
possibilities. For the length and load levels of interest here such responses complicate
matters only at the higher loads of the ‘skip’ curve of figure 7a, where skiplengths
are less than the upper length of 3 m. For moderately longer pipes, skipping becomes
more of an option, with the number of possibilities for solution increasing with the
experimental, or active, length. We note also that active lengths themselves could be
considerably modified by skipping effects.

Actual detailed experiments are yet to be performed on the pipe in question and
other factors would of course be involved in the choice of solution, not least imper-
fections in the pipe itself. However, on increasing temperature we hope to be able to
identify more than one post-upheaval equilibrium state and, in particular, the tran-
sition from fully to semi- or unlocalized shape, as the limit of the (leaning) response
curve of figure 7a is met. For longer experimental lengths, or the active lengths found
in practice, full localization rather than skipping would be expected to provide the
least stiff, and hence most likely, of the available options.

5. Concluding remarks

The paper takes a standard formulation for upheaval buckling and applies it in two
new directions. The first is the study of the effects of asymmetric bed imperfections,
typified by a step, rather than symmetric imperfections such as a prop of infiltrated
material between the pipe and the bed (Taylor & Tran 1993). The extra significance
of asymmetry is successfully demonstrated in figure 2. From a practical viewpoint it
might be supposed that changes in seabed level are as fundamental to pipe modelling
as the infiltration of foreign material, yet previous work relates almost exclusively
to symmetric imperfections. The point is also made that as a source of bifurcation
phenomena, asymmetry is again a richer pasture than symmetry.
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The second, not entirely unconnected, new development is to explore the effects
of finite lengths. Skipping solutions are computed for the first time and alternative
solutions involving either asymptotic or fixed anchor point (FAP) conditions are
compared for a typical experimental rig. A range of lengths and loads is identified
over which a transition from fully localized to semilocalized behaviour must take
place.

Finally, the dynamical systems analogy again proves most useful in identifying pos-
sible forms of localized, semilocalized and unlocalized periodic (skipping) solutions.
We note that all the results presented here depend on the bed being flat and, apart
from the step itself, level. For systems supported at finite positions rather than by
a level bed—the so-called ‘bed of nails’ (Blackmore 1995)—many of the conclusions
developed herein will not apply. More like the corner of a step than a flat bed, the
latter allows non-zero first derivatives

.
y and hence changes of spatial kinetic energy

at discrete points of contact.
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